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ABSTRACT

Supervisory control operators of complex dynamic systems must possess thorough knowledge
of the systems, and skills to apply this knowledge to maintain system operation. Use of intelli-
gent tutoring systems (ITS) can be economical for training such operators. An ITS can help or-
ganize system knowledge and operational information and also provide practice to develop
appropriate skills. We have developed and implemented an ITS on an Apple Macintosh I com-
puter for the marine power plant domain. The ITS is comprised of a simulated power plant, the
tutor, and mouse-based direct manipulation graphical interfaces. The ITS was experimentally
evaluated using Naval ROTC cadets as subjects under three training conditions: (1) simulator
only, (2) a passive tutor that provided help upon request and without intervention, and (3) an
active tutor with intervention. Performance in all three conditions was analyzed in identical
data collection sessions. Performance measures such as percentage of premature and correct di-
agnosis and percentage of relevant and irrelevant diagnostic tests were used. Experimental re-
sults show that a simulator alone is inadequate, whereas a simulator in conjunction with an ITS
can help develop efficient troubleshooting skills. However, not all students are equally recep-
tive to every tutoring strategy and provisions must be made in training programs for individual
preferences and differences in abilities and styles.

INTRODUCTION
Human supervisory control

In the operation of complex dynamic systems such as aircrafts and power plants, human super-
visory control operators must process vast quantities of information promptly to maintain de-
sirable levels of system performance. Various subsystems of a complex system generate a large
amount of information. This information about the system state must be combined with exter-
nal inputs from the environment and processed promptly. Even though computers and automat-
ic control systems are generally employed to process information in real time, complete
automation based on fully autonomous systems is not possible. Human presence is still re-
quired to set high level system goals, monitor system states, and intervene and compensate for
problems that the automated control systems are unable to handle.

In such supervisory control environments, the effectiveness of the human operator and his abil-
ity to identify and integrate relevant information in a timely manner depends upon his knowl-
edge of system operation, his problem solving skills, and the assistance provided by the system

in the form of appropriately chosen and processed information. In this report, we describe re-
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search aimed at developing problem solving skills via moderate fidelity simulators and intelli-
gent computer aids.

Operator training for problem solving

Problem solving skills in complex dynamic environments are typically acquired by training on
actual systems or on simulators after some basic level of domain-specific knowledge has been
acquired. Training on actual systems is usually very expensive. Furthermore, it is undesirable,
and often impossible, to simulate failure conditions on actual systems. Hence, simulators can
be used to achieve the training objectives at a relatively moderate cost.

In our previous study of training, we investigated the levels of simulator fidelity necessary for
teaching problem solving skills (Su, 1985). The domain was oil-fired marine steam power
plants. We identified three dimensions of fidelity that were important for training: physical,
structural, and dynamic. Physical fidelity relates to the appearance of the simulator in relation
to the actual system. Structural fidelity refers to the functional relationship between compo-
nents. Dynamic fidelity concerns the response and behavior of the simulator states with refer-
ence to those of the system. We developed a low fidelity simulator that had moderate structural
fidelity, but low physical and dynamic fidelity. This simulator, called FAIL, was used in a train-
ing program in which problems based on realistic failures were used (Su & Govindaraj, 1986;
Govindaraj & Su, 1988). Trainees using FAIL appeared to follow two distinct stages of trou-
bleshooting: hypothesis formation and hypothesis evaluation. During the diagnostic process,
they seemed to use symptom knowledge together with hierarchically organized system knowl-
edge in a combination of backward and forward reasoning strategies. Qualitative descriptions
of system states along with compiled or chunked knowledge were used for troubleshooting.

Even when simulators have reasonably high levels of fidelity, major portion of the operating
costs in simulator training results from the need for expert instructors. If simulators can be
made more intelligent, substantial cost reductions can be achieved while increasing training ef-
fectiveness. This can be accomplished by developing simulators at moderate levels of fidelity,
and integrating intelligent tutors as part of the simulator design. A moderate fidelity marine
power plant simulator that we have developed and integrated with an intelligent tutor and ex-
perimental results to evaluate its effectiveness for training are described in this report.

Overview

This report begins with a discussion of a qualitative approximation methodology for the design
of complex dynamic system simulators and a description of a marine power plant simulator im-
plemented using qualitative approximation. Architecture for an intelligent tutoring system and
some implementation details of the tutor are described next. In the section that follows, impor-




tance of interactive interfaces for tutoring and features of the student-tutor interface are dis-
cussed. Details of the experiment to evaluate the tutoring system are provided next, followed
by a discussion of the results. The report concludes with a summary of accomplishments and
observations.

A MARINE POWER PLANT SIMULATOR VIA QUALITATIVE APPROXIMATION
General

In this section, a qualitative approximation methodology for the design of moderate fidelity
simulators is described. In simulators using qualitative approximation, the system states are
represented by qualitative measures such as “pressure low” and “flow rate has been steadily de-
creasing”. Exact numerical values are not used. The qualitative state representation aids the hu-
man operator by eliminating the need to compare observed state values to nominal values.
Also, large systems can be simulated with a moderate amount of computational power due to
reduced computational requirements. Basic principles of the design methodology were devel-
oped during previous research supported by ONR (Govindaraj, 1987). The current effort en-
hances these principles by extending them to more general dynamic systems and implementing
them in a marine power plant simulator.

The design principles of qualitative approximation are illustrated with reference to a marine
power plant with approximately SO0 components. The resulting simulator has a moderate level
of physical fidelity, and fairly high levels of dynamic, structural, and temporal fidelity. Physical
fidelity is concerned primarily with the representation of the control and display interface, and
ambient conditions such as noise, vibration, temperature, and humidity. Dynamic fidelity refers
to the evolution of system states over time, including the accuracy and the proportion of the
total number of states represented. Structural fidelity measures the completeness with which
the various components and subsystems are represented. Temporal fidelity is, in a strict sense,
a subset of dynamic fidelity, in that it is concerned with the sequential order in which events
occur and states evolve. Temporal fidelity is especially important in a qualitative representation
of dynamic systems, since even though exact state values are not important, a plausible se-
quence of state evolution is important.

Hierarchies within a dynamic system

The simulator design methodology is based on a hierarchical description of the system. System
components are grouped into a number of subsystems based on their function. For instance, an
oil-fired steam power plant on a ship is comprised of the following primary subsystems: fuel
oil, feedwater, steam, lube oil, and control air. Some components might belong to more than




one subsystem. For example, the condenser is part of the feedwater subsystem as well as the
steam subsystem. Components are classified into a number of generic types, which are then
broken down into a small number of primitives. A condenser as well as an economizer, there-
fore, can be classified as heat-exchangers. This is a rather simple arrangement or design of the
hierarchy based on the physical nature of components that form the system.

The primitives form the basic units in the qualitative approximation method. The primitives are
the simplest form of components performing a single operation or a function, e.g., providing a
path for some fluid in the case of a conduit. Primitives defined in this methodology include:
conduit, source, sink, heat exchanger, and resistor. A component such as a condenser can be
broken down into two sets of sources and sinks, gains and conduits, and a transfer agent. These
hierarchical descriptions follow the natural arrangements of various components and sub-
systems in the real system.

Description and evolution of the system states

The most significant part of the modeling process in simulator design is the qualitative descrip-
tion of the state space. The states are represented as deviations from their nominal values. This
technique, commonly used in modeling dynamic systems, is called the perturbation approach.

The key difference from traditional applications, however, is that in the simulator design meth-
odology described here, the perturbed states evolve using approximate functional representa-

tions rather than exact representations of the primitives.

Each of the primitives has a structure and a set of parameter values. Structures of the primitives
are based on approximate functional equations of system dynamics. The structure, character-
ized by appropriate differential and algebraic equations, is the same for a primitive regardless
of the component which it represents. The parameter values depend on the component of which
a particular primitive is a part. Parameters associated with the primitives of a component are
tuned to maintain temporal fidelity of state evolution.

System state is updated in a two-step process: during the first step, the states of individual com-
ponents are updated; during the second step, the updated states are propagated to successor
components. Numerical values corresponding to deviations from nominal values are used to
represent the states in the simulation. Since these numerical state values are derived from func-
tionally approximate system equations, they represent system states only qualitatively. The
state values are transformed into qualitative descriptions, e.g., pressure low and level high, be-
fore presenting them to the operator.

An approximate, qualitative representation of system states enables the simulator to maintain
cognitive compatibility with trainees. The simulator is said to be cognitively compatible with




its human operator when the qualitative states are similar to state descriptions used by the hu-
man. Humans often use qualitative descriptions of system states, e.g., pressure is low and tem-
perature is fluctuating, rather than specific values, e.g., the pressure is 1150 psi. The simulator
uses similar states; in training, there is no need for an extremely precise numerical state descrip-
tion. Although the simulation evolves qualitatively, temporal fidelity is maintained since the se-
quence of state changes that occurs as a result of an event is the same as it would be in a real
system.

Implementation of marine power plant simulator

Qualitative approximation methodology was used to design a marine power plant simulator
(Govindaraj, 1987). The simulator was based on a hierarchical representation of subsystems,
components, and primitives together with necessary physical and logical linkages among them.
This simulator, called QSTEAM, was implemented on a Xerox 1100 series LISP machine and
provided low physical fidelity. High degrees of structural and dynamic fidelity, however, were
achieved.

We have implemented the current version of the simulator, called Turbinia, in Allegro Com-
mon Lisp (now Macintosh Common Lisp) with Common Lisp Object System (CLOS) and runs
on Apple Macintosh II family of computers (Vasandani & Govindaraj, 1989, 1990). This new
implementation was dictated by our desire to build the entire system on a widely available com-
puter that is also more easily affordable. The basic hierarchical approach, characteristic of
qualitative approximation, was retained. CLOS was used to represent all important entities as
objects, including knowledge of the domain and troubleshooting knowledge. Modeling the en-
tities as objects results in a very robust, modular implementation that is easy to maintain and
evolve. Mouse-based direct manipulation graphical interfaces were used for the simulator and
the tutor. Details of the interface are described in a later section. More complete descriptions
the entire system are given in Vasandani (1991).

This section described a qualitative approximation methodology used for designing training
simulators of complex dynamic systems. A marine power plant simulator was designed using
this methodology. An intelligent tutoring system was used along with the simulator for training
Naval ROTC cadets to help develop good problem solving skills. Details of the architecture for
the intelligent tutoring system are given in the next section.

ARCHITECTURE FOR AN INTELLIGENT TUTORING SYSTEM

Although work on intelligent tutoring systems have been in progress for over two decades,
computer power and developments in cognitive science and ITS research have not been suffi-




ciently harnessed for applications in complex dynamic engineering domains. Among the ex-
tensive surveys found in Sleeman and Brown (1982), Wenger (1987), and Psotka, Massey, and
Mutter, (1988), only a few deal with engineering domains. STEAMER (Hollan, Hutchins, &
Weitzman, 1984), IMTS and its successors (Towne & Munro, 1988), AHAB (Fath, Mitchell,
& Govindaraj, 1990), and SHERLOCK (Lesgold, Lajoie, Bunzo, & Eggan, 1989) are some ex-
amples that have useful applications in an operator training program.

In general, ITSs have an expert module, a student module, and an instructional module (Slee-
man & Brown, 1982; Wenger, 1987; and Psotka et al., 1988). In addition a simulator provides
the training environment. The expert module of an ITS contains the domain expertise which is
also the knowledge to be taught to the student. The student module contains a models of the
student’s current level of competence. The instructional module is designed to sequence in-
structions and tasks based on the information provided by the expert and student models. Also,
the interface used to communicate the knowledge to the student can be treated as a separate
component of the ITS.

We describe below an architecture for an ITS suitable for training operators of complex dynam-
ic systems. Figure 1 illustrates the major components of the instructional system. Together with
the simulator and an interactive interface, the three components of the tutor (i.e., the expert, stu-
dent, and instructional modules) comprise the architecture for the instructional system. The in-
structional system has two major requirements: (1) a domain simulator and (2) organization of
knowledge that supports the functions of the three major elements of the tutoring system. A
brief discussion of the simulator preceded this section. Details of knowledge organization are
discussed below.

Representation of knowledge for tutoring

Operators of complex dynamic systems, in which interdependent subsystems have some level
of autonomy, must be familiar with operational principles of different types of system, e.g.,
thermodynamics and heat transfer for the fuel system, or electrical characteristics for a turbo-
generator. In addition, the operator must know the nominal values of the state variables and pa-
rameters. Problem solving and compensation for failures require processing of information
from various subsystems using efficient troubleshooting strategies. Therefore, an intelligent tu-
toring system must be capable of organizing and presenting knowledge about the system and
troubleshooting task knowledge at several levels of granularity or detail. Pedagogical knowl-
edge concerning instructional strategies is also necessary. A brief discussion of these three
components of knowledge follows.

System knowledge for an intelligent tutor can be represented in several ways. These represen-
tations differ in the levels of description or detail depending on the task for which the knowl-
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edge is required (Rasmussen, 1986). For most large, complex, mechanical systems, such as
steam power plants, a comprehensive representation of system or domain knowledge is via
functional subsystems, fluid paths and schematics. A functional subsystem is a collection of
components responsible for performing a higher level system function such as combustion in
a power plant. Fluid paths are a way of visualizing the system as a collection of different fluids.
The fluids may be fuel, steam and air in a steam power plant, or electric current in an electrical
circuit. A schematic is a pictorial representation of the system structure through its components
and gauges. For large systems, a pictorial representation usually spans several schematics. Al-
though the three representations are complementary rather than mutually exclusive, multiple
representations of the system knowledge are necessary to enhance diagnostic performance
(Rasmussen, 1986).

Each of the three system representations is an aggregation of mechanical components. System
knowledge at the component level concerns a component’s structure, function and behavior at

a level of detail necessary for successful fault diagnosis. A component’s structure refers to its
input and output connections to other components, the fluids carried by it, the gauges attached
to it, and its association with a functional subsystem. A component’s function depends upon its
structure and defines the purpose of the component in the system and its contribution to the
higher level system functions. The manner in which the system state values are affected by the
presence of a component in both the normal and failed states constitutes behavioral knowledge.

System knowledge, although essential, is not adequate for diagnostic problem solving. Trou-
bleshooting knowledge, in addition to system knowledge, is equally important. Troubleshoot-
ing knowledge includes general information about modes of failure in components, detailed
information on certain common failures, cause-effect associations for familiar failures, and be-
havioral information about components and subsystems under different failure conditions
(Govindaraj & Su, 1988; Fath et al., 1990).

Troubleshooting task knowledge, like the system knowledge, can have several representations.
However, the representation most suitable for expert performance is not necessarily the best
representation for a tutor (Clancey, 1987). The tutor’s troubleshooting task knowledge must be
organized in a manner that facilitates inference of possible misconceptions based on observed
actions. Therefore, expressing troubleshooting task knowledge for each failure in terms of valid
student actions at the student-tutor interface is useful for a tutor. Such a representation provides
a normative task model of troubleshooting and offers a convenient way to interpret and analyze
student actions.

Knowledge requirements of an intelligent tutor also include knowledge to evaluate and rectify
misconceptions. When a student’s actions deviate from the normative task model of trouble-
shooting, they may be explained in terms of misconceptions related to system structure, func-




tion or behavior. Knowledge that relates a deviant action to a probable misconception and the
knowledge to rectify the misconceptions are both essential elements of the instructional sys-
tem. An efficient way to repressn€’such a knowledge is in the form of rules.

Finally, pedagogical knowledge c8ncerning instructional content, form and time of presenta-
tion must also be addressed in the design of the instructional system. Instructions can be pro-
vided with or without intervention. Instructions with intervention must be provided during the
session while those without intervention are provided at the end of a training session. Interven-
tion at critical stages of the training period is an effective way of emphasizing a point; non-in-
tervention has the advantage of not interfering with the thought process of the student.

System, troubleshooting and pedagogical knowledge are important for an instructional system.
However, knowledge alone is insufficient to make a tutor effective. It must be appropriately
structured and implemented so that the tutor can access relevant pieces of knowledge correctly
and promptly as the need arises. Certain details concerning how the knowledge described
above is implemented are described next.

Knowledge representation in Turbinia-Vyasa

Turbinia-Vyasa is an instructional system that trains operators to troubleshoot marine power
plants. Turbinia! is the name of the simulated marine power plant used in the instructional

system and Vyasa? is the computer-based tutor that teaches the troubleshooting task using
Turbinla. This instructional system has been implemented on a dual screen Apple Macintosh
II computer in Allegro Common Lisp with object-oriented extensions.

The tutor uses objects to encapsulate knowledge about the system and the failures. This knowl-
edge is represented in declarative as opposed to procedural form and is amenable to changes.

For example, components in the power plant that are instances of the same functional primitive
have similar representations and share methods that create and manipulate data. Examples of

some abstract data types used for representing knowledge are described below.

System: System knowledge is decomposed into nine subsystems, thirteen fluid-paths,
and seven schematics. Knowledge concerning these functional subsystems, fluid-paths,
and schematics is represented in instances of class objects defined for each. Table 1
shows how knowledge concerning combustion subsystem is represented.

1. Turbines were first used in marine propulsion by Sir Charles Parsons in 1897 in the Turbinia. It was
an experimental vessel of 100 tons, fitted with turbines of 2,100 hp driving three propeller shafts, Tur-
binia attained the then record speed of 34.5 knots (Burstall, 1965, p.340).

2. Ancient Indian sage, scholar, and teacher.
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Functional-subsystem:

*combustion-subsystem® is an instance of subsystem

subsystem-name combustion-subsystem

in-schematics (fuel-oil-schematic boiler-schematic)

fluids (flue-gas combustion-air fuel-oil steam)

components (..)

connectors G..)

function *“To mix the combustion-air with fuel and ignite it in the
burner to release thermal energy”

steam-schematic nil

boiler-schematic subsystem structure within the schematic

components: (...)
connectors:  (...)
feedwater-schematic nil
fuel-oil-schematic subsystem structure within the schematic
components: (...)
connectors:  (...)
control-air-schematic nil
saltwater-schematic nil
lube-oil-schematic nil

Table 1. Description of combustion subsystem

Components: All components are instances of subclasses of either simple or composite
primitives. There are nine subclasses of simple and one subclass of composite primitive
defined for the system. There are methods for each subclass of primitives that update
the system state across each component.

Failure modes: The system behavior associated with component failure modes is de-
scribed in instances of failure-mode class of objects. There are four failure-mode ob-
jects, one for each of the four failure types: blocked-shut, stuck-open, leak-in, and leak-
out. Knowledge about a failure mode includes information about the upstream and
downstream system behavior along the affected fluid-path.

Failures: Knowledge of the individual faults in the component is stored in objects of
class component-fault. Knowledge of specific faults includes information concerning
affected schematics, subsystems, fluid-paths, and gauges along with explanations of
cause-effect associations.

Knowledge concerning evaluation and rectification of student’s misconceptions is represented
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as rules. A blackboard captures the dynamic evolution of expert and student behavior. More
complete details of the tutor implementation are described in Vasandani (1991).

Knowledge organization that captures system structure, function, and behavior and trouble-
shooting task knowledge are insufficient for the success of a tutoring system. Properly designed
interactive interfaces can also play a major role in imparting knowledge about the system and
its operation during normal and abnormal situations. In the next section, we describe the im-
portance of such interfaces and how a student interacts with the instructional system.

INTERACTIVE INTERFACES AND STUDENT-TUTOR INTERACTION
Direct manipulation, interactive, graphical interfaces

A good interface makes the knowledge of the tutor transparent to the student and helps the stu-
dent understand the complex structure, function, and behavior of the controlled system. In ad-
dition, a well designed interface addresses the external-internal task mapping problem (Moran,
1983) and establishes a semantic link between the actions relevant to the task in the domain and
the actions to be taken at the interface (Miller, 1988).

In a diagnostic problem solving task, a set of schematics often serve as a convenient student-
tutor interface for knowledge communication. These schematics are designed to minimize the
external-internal task mapping problem by having the valves and gauges that are usually under
the control of the student appear as manipulable objects. Other factors such as grouping of com-
ponents and graphics also influence the design of these schematics.

Grouping of components in schematics depends upon the degree of logical proximity between
components and subsystems; the extent of diagnostic actions necessary to investigate frequent
failures; and layouts that ensure smooth transition between schematics. For example, a high de-
gree of interaction between the steam generation and combustion subsystem of a power plant
requires that the two subsystems be displayed on the same schematic. Similarly, logically prox-
imate components such as the stack and the burner in a combustion unit must appear together
in a schematic. Also, the connections that are discontinued on the left edge of one schematic
must continue from the right edge of the connected schematic to maintain visual momentum
(Woods, 1984).

Graphics and icons in a schematic interface can enhance the performance of instructional sys-
tems (Hollan et al., 1984). Graphical objects or icons can be effectively used to represent mean-
ingful objects or concepts of the system. For instance, in engineering, it is customary to

represent a turbine as a trapezoid with the smaller cross section representing the inlet to the tur-
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bine. The trapezoidal shape also reminds the viewer that the steam expands in the turbine as it
moves from a smaller cross section inlet to a larger cross section outlet. Similarly, concepts
such as blocked-shut valve and functional subsystems of a power plant can also be represented
by meaningful icons.

Schematics provide an interface between the student and the simulated system as well as be-
tween the student and the tutor. The tutor uses the schematics to highlight components that con-
stitute a subsystem or share a common fluid path. Such graphical techniques promote
visualization of functional subsystems and their interaction. Schematics can also be used by the
tutor to animate fault propagation by highlighting gauges as they turn abnormal under simulat-
ed failure conditions.

While schematics along with the simulation provide a practice environment that emulates the
real system, they do not cover all aspects of student-tutor interaction. For example, the students
require a set of expressive techniques to state their hypotheses. The tutor, apart from observing
actions, needs a method of seeking information to evaluate misconceptions. Thus, the tutor in-
terface design also involves developing student- and tutor-initiated channels of communica-
tion. Since the ability of the instructional system to answer questions is limited by its
knowledge and the way this knowledge is organized, the interface must be designed to control
and guide the interaction between the student and the tutor.

In student-initiated communications, the interface has to assume the responsibility of guiding
the user into asking the right type of questions. For instance, when the student seeks informa-
tion concerning the system’s structure, function, or behavior, it is helpful to make the student
select appropriate, context-relevant queries from a set of menus. Such menus, when organized
hierarchically, can also reflect the inherent hierarchical structure of the complex system and
promote a better understanding of the system (Miller, 1985). Furthermore, an interface that has
the provision to address identical queries via multiple representations of the system helps con-
solidate knowledge from multiple perspectives.

For communications initiated by the tutor, the interface design involves getting the student to
understand and correctly respond to the queries. Where a student can respond to a query in mul-
tiple ways, the student options have to be recognized in advance and the choice restricted to

known alternatives. For example, when the student is asked to provide hypotheses concerning
the most likely mode of failure, it makes sense to confine the student’s response to only those
modes of failure that are known to the tutor. Therefore, making the student select from viable
alternatives instead of permitting unguided response is a better approach to interface design.

The issues related to the design of interfaces described above have been implemented in an in-
telligent tutor for diagnostic problem solving. Implementation details of the student-tutor inter-
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face designed to communicate its knowledge to the student are discussed next.
Student-tutor interface and operator interaction

The interface to Turbinia-Vyasa consists of seven schematic windows and a large number of
dialogs and menus that establish communication between the student and the tutor. A single
button computer mouse is the only input device used to interact with this direct manipulation
interface.

The seven schematics display the physical connections between the components of the power
plant. Figure 2 is an example of the boiler schematic. The student can access these schematics
through the seven icons displayed in a schematic menu. The schematics are used to investigate
components and probe gauges attached to these components. Investigating a component in-
volves moving the cursor on to the component and clicking the mouse button. The same action
is also used to indicate diagnosis, pick the component for which information is desired, and in-
dicate hypotheses. Thus, identical student actions on a schematic have different responses. The
actual response depends upon the mode of the system in which the interaction occurs. There
are four system modes in which interaction occurs: troubleshooting mode, diagnose mode, stu-
dent-initiated tutor dialog mode and tutor-initiated dialog mode. Except for the tutbr-initiated
dialog mode, the student is responsible for switching between the remaining three modes of the
system. The current mode of the system is indicated by a highlighted icon representing the
mode and also by the shape of the cursor.

Student-initiated interaction with the tutor is accomplished by clicking on either the stop icon
in the requests menu or a menu item in the hypothesis menu (see Figure 2). This action halts
the simulation temporarily, enabling the student to interact with the tutor while preserving the
information concerning system states.

When the tutor is invoked using the stop icon in the requests menu, the student can explore the
tutor’s knowledge-base. The student’s exploration is guided by a set of hierarchically organized
dialog menus that reflects the inherent system hierarchy. The student can access knowledge
concerning specific modes of failure, components, subsystems, and fluid-paths. The informa-
tion accessed by the student is presented in textual or graphical form.

The interface offers substantial flexibility to the student and maintains context-sensitivity. For
example, when the student inquires about fluid-paths following an inquiry about a subsystem,
the system first offers a choice of selecting a fluid-path from only among those that can be
found in the inquired subsystem. Thus, knowledge about subsystems and fluid-paths does not
have to be obtained independently to deduce which fluid-paths lie in which subsystems.
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The student can also invoke the tutor by selecting any of the four items on the hypothesis menu
(see Figure 2). The first item, “View”, is used by the student to review his own hypotheses con-
ceming failure. The “Add” and “Delete” items are used by the student to modify the hypothe-
ses. “Advice” is used to seek assistance from the tutor in refining current hypotheses. The
assistance provided is in the form of diagnostic tests that can strengthen or weaken an indicated
hypothesis. This helps the student develop an association between failures and its effect on sys-
tem behavior.

The tutor intervenes to initiate communications with the student in three situations. First, the
tutor intervenes when it becomes necessary to notify the student about an error. The error could
be an incorrect diagnosis or an invalid action. Second, the tutor intervenes when a possible mis-
conception concerning the system’s structure, function or behavior is identified based on the
student’s actions. When possible misconceptions are identified, the tutor provides canned, but
context-sensitive instructions to rectify the student’s misconceptions. Third, the tutor some-
times prompts the student for an action or requests for hypotheses concerning failure. In all the
three situations, the tutor’s communication begins with a beep to draw the student’s attention.

In this section we described the importance of interactive interfaces and details concerning stu-
dent-tutor interaction. Experiments were conducted to evaluate the tutoring system and to de-
termine the benefits of using the instructional system in addition to a simulator for training
operators in troubleshooting dynamic systems. Details concerning the experimental evaluation
are discussed next.

EXPERIMENTAL EVALUATION OF THE TUTORING SYSTEM

Prior to beginning formal experiments to test the effectiveness of the tutor, the tutor was eval-
uated with the help of a naval officer who is also an ROTC instructor experienced with steam
power plants. This evaluation was informal and somewhat subjective, and was aimed at testing
the aiding material and instructional strategies. A set of formal experiments designed to mea-
sure the diagnostic performance of operators trained with and without the aid of Turbinla-
Vyasa followed. The discussion in this section deals with the details of the evaluation.

Checking for consistency and correctness

The primary goal of the subjective evaluation was to ensure that the instructional material pre-
sented to the student was technically correct, properly stated and consistent with the current
training program for engineers in the US Navy. A secondary goal was to gather suggestions for
improving the interface to Turbinla and Vyasa.




16

During the subjective evaluation, the experimenter solved problems on Turbinia-Vyasa
while a subject matter expert, a Naval ROTC instructor, observed the interactive performance
feedback from the tutor. The instructor was requested to report any inconsistencies that he ob-
served. He was also asked to make suggestions and comments concerning the design of display
and operator interaction. Notes were made of the changes suggested. These notes were later
discussed in detail. Following the discussion, several of the suggested changes were incorpo-
rated. However, the most useful outcome of this analysis was the reaffirmation of the experi-
menter’s faith in the technical validity of the material presented to the student.

At the conclusion of this evaluation, both the subject matter expert and the experimenter were
confident that the students would be receptive to Turbinia-Vyasa’s tutoring strategy and that
the instructional system would be a worthwhile contribution to the Naval ROTC training pro-
gram. Formal experiments were started after this evaluation.

Formal experiments

In the formal experiments, performance of subjects trained with and without the tutor was com-
pared. There were two goals in the experiment: (1) determining the effectiveness of the tutoring
architecture and methods for knowledge representation and (2) establishing the usefulness of
computer-based training programs over traditional means of training operators to troubleshoot
complex dynamic systems. In addition, the experiment provided an opportunity for comparing
the effect of passive and active tutoring strategies. The above goals can be formulated in terms
of the following questions: (1) is it feasible to build an effective computer-based tutor by im-
plementing the proposed architecture, (2) is the training by computer-based tutor better than the
training provided by the simulator alone, and (3) how does the level of aiding during the course
of training affect performance. Details of the experiment to find answers to these questions are
discussed below.

The experiment consisted of two phases: training and data collection. In the training phase, sub-
jects were exposed to one of the three instructional methods: (a) training on simulator alone;
(b) training with the aid of a passive tutor; and (c) training with the aid of an active tutor. During
data collection, trained subjects from all three conditions attempted to solve the same set of
problems unaided by the tutor. A complete description of the experimental design follows.

Experimental design

There were two main factors of interest in the experiment: training condition and seen status of
the problem. There were three training conditions: unaided simulator, aiding with passive tutor,
and aiding with active tutor. The first was a baseline condition where training was provided us-
ing just Turbinia. The second and the third training conditions used the computer-based tutor
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Vyasa. In the second condition Vyasa functioned in the passive mode. It functioned in the
active mode in the third condition.

The second factor of interest was the seen status of the problem. We anticipated that this factor
would influence performance and therefore should be investigated. Seen status had three levels:
seen once, seen twice and unseen. Seen once status applied to problems that were seen once
before by the student during training. Similarly, seen twice status applied to problems that were
seen twice during training. Unseen status referred to problems that were not seen by the student
until the test phase. Since the instructional system was expected to train for not just familiar
situations, the effect of seen status was important to analyze the transfer of training from famil-
iar to unfamiliar situations.

Subjects and problems were two other factors that could account for variations in the experi-
mental data. While subjects were nested within training condition, problems were nested with-
in seen status. Subjects and problems along with the main factors and their interactions make
a complete list of sources of variation considered in this experiment.

Training condition and seen status were fixed factors and subjects (nested within training con-
dition) and problems (nested within seen status) were random factors. Therefore, a mixed mod-
el was used to analyze data from the experiment.

Equipment

For the experiment, Turbinia (simulator) and Vyasa (tutor) were installed on a dual screen
Apple Macintosh II workstation with a 40MHz accelerator board. This computer was used for
all data collection sessions. An Apple Macintosh II cx was used for few sessions during initial
stages of training. Training instructions for the three experimental conditions were tape-record-
ed in a female voice on separate tapes to be played back to the subjects during their first training
session.

A pilot study

The actual experiment was preceded by a pilot experiment. The purpose of the pilot experiment
was to validate the instructional material and to determine software errors that may have gone
undetected. The pilot study thus offered the experimenter an opportunity to evaluate the soft-
ware under experimental conditions.

Four graduate students from Georgia Institute of Technology participated in the pilot study. All
four came from engineering backgrounds, had several courses in thermodynamics and were
well exposed to research issues related to human-machine systems.
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The pilot study was conducted with Turbinla-Vyasa operating in the active mode. Since the
simulator and the passive tutor were also functional in this mode they were not subjected to sep-
arate pilot studies. Each of the four pilot subjects participated in four sessions. In the introduc-
tory session, the subjects read the instructional manual to become familiar with the Turbinia-
Vyasa interface. Then, using the instructions, the subjects attempted to solve a single problem
designed specifically for the first session. In the subsequent sessions, each subject saw four
problems in every session.

The pilot study identified several discrepancies in the instructional manual and errors in soft-
ware. These were corrected promptly. Furthermore, five problems out of the twenty-nine sup-
plied by the Navy were eliminated from the set to be used in the full-scale experiment because
they were either redundant or exhibited inconsistent behavior. Of the remaining twenty-four
problems, those that had software errors were modified, sometimes more than once, and re-
solved by the pilot subjects till the error was corrected.

Apart from detecting errors in the instructional manual and the software, the pilot study was
also useful in estimating time taken to solve problems. This helped the experimenter design the
appropriate duration of the introductory as well as subsequent training and data collection ses-
sions.

At the conclusion of the pilot study, the experimenter was better equipped to answer questions
from subjects participating in the full-scale experiment. This was important as answers to sim-
ilar questions by subjects in the three experimental conditions had to be consistent and required
advance preparation.

The experimenter could not get an initial estimate of the full-scale experimental results how-
ever, since the pilot subjects were not drawn from the same population as that of subjects that
were to participate in the full-scale experiment.

Experiment

Thirty cadets from the Georgia Institute of Technology Naval ROTC unit participated as sub-
jects in the experiment. All except one subject were male. Subjects were required to have a ba-
sic understanding of the theory of marine power plants. Therefore, sophomores and juniors
who had taken the freshman-level course in Naval Engineering offered by Navy ROTC were
considered. Among those cadets who volunteered, 24 sophomores and 6 juniors were selected.
Although some of the subjects had additional exposure to thermodynamics through course
work or had experience operating marine power plants, effects of these factors were not con-
sidered. Therefore, the assignment of subjects to the three experimental groups was done ran-
domly.
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Each subject was paid $6 per session for every session completed in both the training and the
testing phase. In addition, an award of $25 was promised for the best troubleshooter in each of
the three groups based on performance in the two data collection sessions.

Subjects were told about the performance measures prior to the experiment. (Performance mea-
sures are described in a later section.) They were also informed that the number of problems
correctly diagnosed in minimum time was the only measure for the purpose of determining the
award.

Experimental materials

There were separate written instructional manuals for each of the three experimental condi-
tions. The manual for subjects using just the simulator (Turbinia) provided an introduction to
the marine power plant, its automatic boiler control system, a description of the common modes
of failure and a guide to make the subjects familiar with Turbinia’s interface. For subjects us-
ing Turbinla-Vyasa in the passive mode additional instructions were included that described
the features and the interface of the passive tutor. Further instructions describing the capabili-
ties of the tutor were added to the manual for subjects using Turbinla-Vyasa in the active
mode.

Other material used in the experiment included a subject consent form and a survey form. The
survey form was designed to obtain a feel for the subjects’ academic background, shipboard
experience and computer skills.

Subjects were required to answer three written questionnaires at three key points in the exper-
iment. The first questionnaire was used to evaluate the subjects’ operating knowledge of the
marine power plant, its components and their behavior under normal and failed states prior to
the start of training. The second questionnaire was identical to the first and was used at the end
of the training sessions. Answers to the two questionnaires provided the experimenter with
some means to measure the knowledge acquired during training. Subjects answered the third
questionnaire at the end of the last data collection session to provide subjective opinions about
various aspects of the training methods.

In addition, the subjects were provided with pencil and paper in every session to take notes, if
any, pertaining to the problems and to comment on the tutor and its strategies.

Experimental procedure

The experiment was conducted in two phases: training and data collection. In the training
phase, three instructional methods were employed to train three groups of subjects to trouble-
shoot a simulated marine power plant. The effect of training was evaluated in the data collec-
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tion phase where all subjects were exposed to identical problems on Turbinla without the aid
of the tutor.

The subjects were randomly assigned to three groups of ten each. Group I was trained using
just Turbinia, the simulator. Subjects in Groups I and III were aided by the computer-based
tutor Vyasa. While Vyasa functioned in the passive mode for Group II, it functioned in the
active mode for Group III.

Subjects in each of the three groups filled a consent form, completed a survey form and an-
swered questions in Questionnaire 1 prior to the start of the experiment. The subjects were then
given written instructional manual appropriate for each group. They were advised to read the
instructional manual before starting the first session.

Subjects were distributed into three batches. Each batch was identified by the date on which it
started training. Although the assignment of subjects to batches was done randomly, at least
three subjects from each group were assigned to every batch. When the subjects from the first
. batch did not require further assistance in learning the system, a second batch started training
on a second computer with fully compatible but slightly slower hardware. After the first batch
completed the training and data collection sessions, the second batch was moved to the first
computer. Similarly, the third batch started training on the second computer once that machine
was available and the experimenter was no longer occupied with the second batch. They moved
to the first computer when it became available. Thus, data collection sessions for all batches
were done on the same machine. Even though we realized the possible impact of excluding the
batching factor in the experimental design, we did not consider it worthwhile to study its effect.

Training phase

The first ten sessions were used for training of subjects in each of the three groups. Each session
had a maximum duration of forty-five minutes. The sessions were run on consecutive days with
typically one session per day. Occasionally, when a subject missed a day, the lost session was
made up by extending the training period by a day. Under no circumstances was a subject per-
mitted multiple sessions in a day.

The first training session for each group introduced the system using a single problem. Audio
taped instructions, different for each group, were used during this session. These instructions
introduced the subjects to the interface and valid forms of interactions. All interactions between
the subject and the interface for this first session were controlled through these instructions.
The capabilities of the passive and active tutor were also demonstrated through a predeter-
mined set of actions performed by the subject upon request. The experimenter was present for
the entire duration of the first session to answer any questions. Variability of information shared
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by the experimenter with the subjects was controlled as far as possible so that consistency could
be maintained between subjects and across training groups.

After the first session, subsequent training sessions had three problems each. A subject had a
maximum of 13 minutes to solve each problem. If the subject solved the problem early, the next
problem was immediately presented. Thus, if the subject solved one or more of the three prob-
lems in a session within the allotted time for each problem, the session could potentially be
completed in less than 45 minutes.

At the end of each problem the subject was provided the solution. While solutions presented to
subjects in the tutor condition were accompanied by an explanation, no such explanation was
provided to subjects using the simulator alone.

For the first three training sessions in each group the experimenter was present to answer any
questions. For the subsequent sessions the presence of the experimenter in the room was not
considered necessary although he was still available to answer questions. It was only on a cou-
ple of rare occasions that the subjects sought any clarification from the experimenter past the
third session.

At the end of each training session past their third, the subjects were asked to make subjective
comments about the instructional system. Although the subjects were free to write anything
they were encouraged to identify their “likes” and “dislikes” for the system. At the end of their
last training session, the subjects were asked to answer Questionnaire 2.

Data collection phase

The data collection phase consisted of two sessions. These sessions were run on consecutive
days immediately following the completion of training. During the data collection sessions, the
subjects interacted with the simulator only, unaided by any tutor, irrespective of their training
condition,

Each data collection session was approximately 50 minutes long and consisted of 5 problems.
If the subject solved the problem within the 10 minute period allocated for each problem, the
next problem was presented immediately. However, unlike the training sessions, no solution
was provided to the student at the end of each problem. At the end of the data collection ses-
sions, each of the subjects completed an “exit” questionnaire.

Training and test problems

Twenty-four problems were identified for use in the experiment. Since we wished to study the
effect of training methods on performance, for familiar as well as novel situations, 5 out of the
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24 problems were exclusively reserved for the data collection phase.

For the training phase comprised of 1 single-problem session and 9 three-problem sessions, a
total of 28 problems were required. With 5 of the 24 problems reserved for test sessions, there
were only 19 available for use in training. Therefore, 9 problems were shown twice to the sub-
jects during training. Selection of these 9 problems was done randomly. However, the same
problem was never presented the second time within a span of 3 consecutive sessions.

In the test sessions, in addition to the S unseen problems, subjects were given 5 problems from
among those seen during training. Three of these problems appeared twice during training and
two were seen only once.

The order in which problems were presented during training and test was identical for all
groups. In the test sessions, seen and unseen problems were alternated beginning with an un-
seen problem. The actual order in which the problems appeared was, however, determined ran-
domly.

Performance measures: Dependent variables

Although the ultimate goal in troubleshooting is to successfully identify the failed component,
there were several other performance measures considered in the experiment. This section de-
scribes the measures used to evaluate the troubleshooter’s performance. Subject actions were

recorded for computing the performance measures. These measures were obtained directly or

derived from the data.

Number of problems solved: Successfully diagnosing a fault is an important measure
of troubleshooting ability. Since there is a time limit imposed on solving the problems,
a problem is considered solved if a correct diagnosis is made within the time (10 min-
utes) allocated for each problem in the test sessions.

Solving a problem correctly is not sufficient, however. In real world there are costs as-
sociated not only with the troubleshooter’s inability to solve problems but also with
how the diagnosis was made. Therefore, efficiency of the diagnostic process must also
be considered. The remaining performance measures focus on efficiency of trouble-
shooting.

Troubleshooting time: For those subjects who were successful in solving the prob-
lems, the total amount of time taken for solution is a valuable measure of their perfor-
mance rating. Those who take less time are considered better troubleshooters.

Number of informative actions: A student may take many actions at Turbinia’s in-
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terface. However, not all actions are informative. Only those actions that are taken to
obtain gauge readings are informative since they alone can help the students access the
system state information needed to solve the problems. Therefore, the total number of
such informative actions provides a measure of the student’s overall troubleshooting
ability. The smaller the number of informative actions taken to solve a problem, the bet-
ter is the diagnostic performance.

Percentage of relevant informative actions: Even though every informative action
has some information content, only some are directly relevant to the failure. Since the
total number of relevant informative actions necessary to solve a problem is dependent
on the problem, the percentage of informative actions that are relevant for a failure is a
better measure.

Nature of diagnosis: In order to isolate a failed component it is necessary to conduct
diagnostic tests that eliminate other probable hypotheses. Due to the limited availability
of gauges in the system, the troubleshooter may not be able to isolate the fault complete-
ly. However, for each of the failures, there are some gauges that are affected and must
be checked to justify pursuing that hypothesis. If a student correctly solves a problem
but has not gathered sufficient evidence to do so, the diagnosis is considered preinature.
On the other hand, if the problem has been seen before then it may not be necessary to
gather all evidence before correctly identifying it. However, while attempting to solve
a seen problem a student may make several incorrect diagnoses. If these diagnoses sug-
gest hypotheses that are not probable, then the final diagnosis is still considered prema-
ture. The rationale for calling such a diagnosis premature is that if a student incorrectly
diagnoses a seen problem, then further investigations for that failure should proceed
along the lines of an unseen problem.

There may also be times when the student is unable to diagnose the fault even after suf-
ficient evidence implicating the failed component has been gathered. This indicates the

student’s inability to integrate the diagnostic information and make effective use of it.

Such diagnoses are termed as overdue.

Finally, when the student integrates diagnostic information properly, the diagnosis is
neither premature or overdue, and hence is considered timely. Categorizing diagnoses
as premature, timely or overdue provides a subjective measure of diagnostic perfor-
mance.

Percentage of guesses: At any time during the troubleshooting process there are likely
candidates for the failed component, based on the observed abnormal system states.
The likelihood that a component may have failed increases or decreases as more diag-




nostic tests are conducted. While quick diagnosis of a problem saves time and money,
incorrect diagnosis costs additional time and money. Even so, selecting a likely compo-
rent as the cause of abnormal system behavior is not as bad as picking a component that
cannot have failed. Thus, an incorrect diagnosis that implicates a component that could
not have failed, based on observed symptoms, is a consequence of pure guesswork or
inaccurate troubleshooting knowledge. Such an incorrect diagnosis is considered a
guess and fewer guesses indicate better troubleshooting performance. Since the number
of incorrect diagnoses, in terms of guesses and probable hypotheses, may depend on the
problem, percentage of diagnosis for each problem that were guesses is a reasonable
measure of troubleshooting performance.

Number of unaffected schematics/subsystems/fluid-paths investigated: For each
failure, only a few schematics, subsystems, and fluid-paths are affected. Affected sche-
matics are those that have gauges with abnormal readings. Investigating components in
schematics that are unaffected by the failure reflects the student’s inability to relate
symptoms to the structural location of the power plant. Thus, investigating components
in unaffected schematics is undesirable and the number of such schematics wrongly in-
vestigated is a measure of performance.

Likewise, investigating unaffected subsystems and fluid-paths reflects the student’s in-
ability to relate symptoms to the functional location of the power plant. The number of
subsystems and fluid-paths wrongly investigated in this manner are also measures of
performance. The fewer the number of unaffected subsystems or fluid-paths investigat-
ed by the student in solving a problem, the better is the performance.

The dependent variables listed above are closely related to the troubleshooting strategy that the
student is likely to follow. We expected that those trained on the simulator alone would perhaps
develop an unguided search strategy to locate the fault. Therefore, they are likely to make more
guesses, take a lower percentage informative actions that are relevant, make more premature
diagnoses and investigate more unaffected schematics, subsystems and fluid-paths. However,
since they would rarely be using concrete reasoning, they would perhaps solve the problem in
less time but with many attempts of incorrect diagnosis. Furthermore, it was anticipated that
comparing the performance of those trained with the passive and active tutors might reveal in-
dividual differences in performance.

In addition to the performance measures described above, a subjective evaluation of the in-
structional system was also performed. The exit questionnaire (#3) was designed for this pur-
pose. Results of analyzing this questionnaire and an analysis of the data collected from the
experiment are discussed in the next section.
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EXPERIMENTAL RESULTS

Analysis of the experimental data revealed that subjects in the unaided group developed a trou-
bleshooting strategy distinctly different from those of subjects that were aided by Vyasa dur-
ing training. The unaided group did not devise any good and consistent troubleshooting
strategy and often relied on unguided search for the failure. As such, they conducted a large
number of diagnostic tests and very few of these tests were relevant to the failure. In the ab-
sence of a guided strategy and in their pursuit for a quick diagnosis, the unaided group provided
a large number of incorrect diagnoses and investigated a large number of unaffected schemat-
ics, subsystems and fluid paths.

On the other hand, the two groups aided by the tutor hypothesized probable failures and con-

ducted diagnostic tests to either strengthen or weaken their hypotheses. Most of the informative
actions they took were relevant to the failure. In spite of an incentive to solve problems quickly,
the aided groups did not indulge in much guesswork. Most of their guesses appeared to result
from panic that set in when they were running out of time. Also, since their investigations were
more focussed on hypotheses that explained observed :bnormal behavior, the aided groups in-
vestigated fewer unaffected schematics, subsystems and fluid paths.

While subjects in each group solved approximately the same number of test problems, on an
average the unaided group solved problems in shorter time. This was not at all surprising since
this group relied heavily on guessing. Thus, their good performance based on quick diagnosis
of failures was offset by the numerous incorrect diagnoses for each problem.

For both the aided and unaided groups, performance on most measures was better with seen
than unseen problems. Among seen problems, those seen twice were often better recalled by
all groups, indicating that practice helped subjects develop symptom-cause associations. The
two aided groups performed better than the unaided group with unseen problems indicating that
the training they received was successfully transferred to unfamiliar situations as well.

There were slight differences in the performance between the two aided groups. Those trained
with the active tutor made a smaller number of guesses and hence fewer premature diagnoses,
but they also solved a smaller number of problems. Most of the variation in the performance

between the two aided groups seems to have been caused by individual differences. In the ac-
tive tutor group, there were a few subjects who became somewhat dependent on the tutor; their
performance suffered once the aid was withheld in the test sessions. There were others in both
aided groups that became overly conservative and often investigated and eliminated less likely
alternatives as well. This may not necessarily be a bad troubleshooting strategy, since incorrect
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diagnosis are costly. However, any delay in diagnosing the fault could also be costly. Such ac-
curacy-time trade-offs stem more due to individual preferences rather than the instructional
strategy used for training.

Discussion of resuits

From an analysis of the results, it is clear that the tutor in both the passive and the active modes
helped the students to develop useful troubleshooting strategies. The tutor was also helpful for
forming plausible failure hypotheses based on observed symptoms and for systematically elim-
inating them by conducting appropriate diagnostic tests. In comparison, those trained without
the tutor did not develop good troubleshooting strategies. They relied rather heavily on guess-
ing the solution. Furthermore, the tutor helped the students to recognize and integrate crucial
diagnostic information in a timely manner that the students without the tutor were unable to do.
Students trained by the tutor were better prepared for unfamiliar situations than those trained
on the simulator.

The data also indicated that the effectiveness of a tutoring strategy depended upon the individ-
ual student. For example, the strategy of providing explanations for all observed symptoms for
each problem was intended to help the students develop a proper causal model of fault propa-
gation. Some students who learned to map salient symptoms to causes from these explanations
became overly conservative. During troubleshooting they spent a lot of time eliminating all
probable hypotheses linked to an observed symptom even when sufficient evidence in support
of a highly probable hypothesis had been collected. Another tutoring strategy adopted by the
active tutor was to provide help in building, refining, and eliminating failure hypotheses. In this
capacity the active tutor came to be perceived by some students as an on-line associate. These
students often took the help of the active tutor to refine their failure hypotheses and thus be-
came dependent on the tutor to solve problems. Performance of these students deteriorated
when the active tutor was withdrawn.

In summary, resulits of the experiment show that a simulator alone is inadequate. A simulator
in conjunction with a computer-based tutor can help develop efficient troubleshooting skills.
However, not all students are equally receptive to every tutoring strategy and provisions must
be made in training programs for individual preferences and differences in abilities and styles.
A more complete and thorough analysis of the experimental data and results will appear in
Vasandani (1991).
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CONCLUSIONS

The research program described in this report has contributed to the field of training for diag-
nostic problem solving in realistic, complex dynamic system domains. We have shown the vi-
ability of designing and implementing an effective intelligent tutoring system for supervisory
control operation. Instructional systems that integrate an ITS with a simulator and provide ac-
cess via direct manipulation graphical interfaces can contribute greatly to an effective training
program. We hope that our research results will stimulate further research and development of
tutoring and training systems and implementation within the navy and elsewhere. As a result
of our research, we have gained a better understanding of diagnostic problem solving in com-
plex engineering domains. In addition, we have developed good insights and expertise in mod-
eling large dynamic systems, knowledge representation for tutoring, and interactive interfaces.
To benefit from our experience and expertise, we are planning a program of research to develop
models of expertise that will further enhance tutoring and training systems and intelligent op-
erator associates.
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